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We investigate energy transport in several two-level atom or spin-1 /2 models by a direct coupling to heat
baths of different temperatures. The analysis is carried out on the basis of a recently derived quantum master
equation which describes the nonequilibrium properties of internally weakly coupled systems appropriately.
For the computation of the stationary state of the dynamical equations, we employ a Monte Carlo wave-
function approach. The analysis directly indicates normal diffusive or ballistic transport in finite models and
hints toward an extrapolation of the transport behavior of infinite models.
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I. INTRODUCTION

The transport of energy or heat has been intensively stud-
ied since Fourier introduced his famous law of heat conduc-
tion in 1807. Surprisingly, still 200 years later, some funda-
mental problems remain unsolved.1 Contrary to our everyday
experience, the appearance of diffusive behavior according
to Fourier’s famous law is difficult to obtain from the direc-
tion of any underlying microscopic theory.

A question of central relevance concerns the classification
of the transport properties of a system into normal diffusive
or ballistic behavior. In the classical domain, it seems to be
largely accepted that normal energy transport, i.e., spatial
diffusion instead of ballistic transport or localization, re-
quires the chaotic dynamics of a nonintegrable system.2,3 In
the quantum regime, however, the question whether diffusive
behavior follows from the underlying theory turns out to be a
controversial issue.4–8 This is mostly due to the nontrivial
character of the question, how energy is transported on the
microscopic scale.

Amongst the many different techniques of investigating
transport in quantum mechanics, let us consider two ap-
proaches in more detail here. The first one is the prominent
Green-Kubo formula. Derived on the basis of linear response
theory, it has originally been formulated for electrical
transport.9–11 Therein, the system is perturbed by an external
force, first, the electric field, applied to the system. The re-
sulting current of charge is viewed as the response to this
external perturbation. Finally, the transport coefficient �con-
ductivity� follows from a current-current autocorrelation.
The same approach is also used in the different case of den-
sity driven transport, e.g., the transport of energy or heat. In
such a situation, the current is driven by a much more com-
plicated mechanism �the coupling of reservoirs to the sys-
tem� than simply an external force, which can be nicely writ-
ten as a term within the Hamiltonian of the system.
Nevertheless, the correlation function is ad hoc transferred to
the density driven scenario by replacing the electrical current
by the energy or heat current.12 However, the justification of
this replacement remains a conceptual problem here.

One big advantage of this widely used approach is cer-
tainly its computability after having diagonalized the sys-

tem’s Hamiltonian. A nice overview of results from the Kubo
formula for spin models can be found, e.g., in the work by
Heidrich-Meisner13 �for further reading, we suggest the com-
prehensive literature cited therein�. However, in most cases,
a direct analytical solution for an infinite system is not fea-
sible and the interpretation of the results for finite systems
seems to be not straightforward. For a finite system, the fre-
quency dependent transport coefficient consists of numerous
delta peaks with different weights at frequencies � and is
zero elsewhere. How to extract the dc conductivity �interest-
ing especially for the energy transport� of the finite system
from this result or extrapolate the conductivity for the infinite
one is a difficult question.14–17

A different approach to investigate the transport behavior
of a system is more connected to the experimental measure-
ment of heat conductivities: The system is directly coupled
to heat baths of different temperatures within the theory of
open quantum systems.18–22 That means that the Liouville–
von Neumann equation, describing the time evolution of the
density operator of the system, is extended by incoherent
damping terms simulating the influence of the heat baths.
How to set up the correct dynamical equation here is highly
nontrivial and involves the combination of many subtle ap-
proximation schemes. In the case of an improper approach,
the derivation can lead to mathematically correct, but physi-
cally irrelevant dynamical equations as discussed recently.23

Having derived a proper quantum master equation �QME�,
the interpretation of the results for finite systems is relatively
easy: After finding the stationary state of the dissipative dy-
namics, all interesting quantities as currents and energy pro-
files are simply accessible by computing the expectation
value of the respective operator. However, also this approach
is restricted to finite systems since a complete analytical so-
lution for larger systems is not available. Thus, the extrapo-
lation to infinite systems needs a careful discussion to ex-
clude errors due to the finite size of the investigated models
as well.

In the present paper, we will consider several model sys-
tems according to their transport properties. This is mainly
done by the bath coupling method as discussed above, and
by comparing with results from the Kubo formula. Let us
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start in Sec. II with an introduction to the QME, the neces-
sary observables, and the Monte Carlo wave-function
technique24,25 which is used to integrate the QME. After-
wards, we will present the results for several model systems:
for chainlike systems in Sec. III and more complex ones in
Sec. IV, followed by our summary and conclusion.

II. BACKGROUND

A. Model system

The considered system consists of N weakly coupled sub-
units described by the Hamiltonian

Ĥ = Ĥloc + Ĥint = �
�=1

N

ĥ��� + J�
�=1

N−1

ĥ��,�+1�. �1�

The first part Ĥloc of the Hamiltonian contains the local spec-

tra of the subunits. The second part Ĥint describes the inter-
action between adjacent sites with the coupling strength J.
Here, we require that the interaction is weak in the sense that
the energy contained in the local part is much larger than the

energy contained in the interaction part, �Ĥloc�� �Ĥint�.
More concretely, we will investigate one-dimensional

�1D� or quasi-1D chains of two-level atoms or spin-1 /2 par-
ticles. Both two-level atoms and spins are described by the
same algebra, and thus, it is convenient to use the Pauli

operators �1̂ , �̂x , �̂y , �̂z� as a suitable operator basis here. The
above mentioned weak coupling claim is fullfilled by intro-
ducing a local Zeeman splitting �

2 �̂z, where we require that
� is much larger than the coupling constant J. Note that this
weak internal coupling constraint is a necessary precondition
for the validity of the master equation introduced below; i.e.,
we are not able to consider systems with � approaching the
same magnitude as J here. Hence, the models described by
the Hamiltonian given in Eq. �1� are not to be confused with
spin chains in cuprates, e.g., where the local field is always
close to zero, and thus, small compared to the coupling
strength. However, the discussed models can be seen as spin
chains in strong external fields, or simply as weakly coupled
chains of two-level atoms as frequently considered in quan-
tum optics and quantum information theory.

To investigate the transport properties of these systems,
they will be explicitly coupled to independent environments
of different temperatures. Let us discuss the appropriate
QME24 to describe this situation in the following section.

B. Lindblad quantum master equation

In general, the derivation of the QME from a microscopic
model24 �a system coupled to an infinitely large environ-
ment� relies on some well known approximation schemes:
the Markov26,27 assumption, the Born approximation, and the
secular approximation.26,28 Recently, there was a discussion
on how to derive a suitable Lindblad29,30 QME in a nonequi-
librium scenario,23 i.e., an equation to investigate transport in
weakly coupled quantum systems. The Lindblad form of a
QME defines a trace and hermiticity preserving, completely
positive dynamical map,24,31 which thus retains all properties

of the density operator at all times. In order to approach this
dynamical equation, the approximations are carefully carried
out in a minimally invasive manner to retain the central non-
equilibrium properties of the model. It was shown that this
nonequilibrium Lindblad QME is in very good accord with
the results of the Redfield master24 equation �non-
Lindbladian�, contrary to the standard Lindblad QME in the
weak coupling limit.23

In a nonequilibrium investigation, one needs two heat
baths at different temperatures locally coupled to the system;
i.e., the heat baths couple only to a subunit at the edge of the
system. The QME of such a situation yields

d�̂

dt
= − i�Ĥ, �̂	 + DL��̂� + DR��̂� , �2�

where the dissipator DL refers to the left heat bath and DR to
the right one, depending on the full density operator �̂ of the
system, i.e., the state of the chain described by the Hamil-
tonian �1�. Both dissipators depend on the coupling strength
� between system and bath as well as the temperature of the
bath, respectively. Besides those incoherent damping terms,
Eq. �2� contains a coherent part containing the Hamiltonian
�1� of the system.

The dissipator describing the heat bath coupled to a sub-
unit at the edge of the system yields

DF��̂� = �
k,l=1

2

�	F�kl
F̂k�̂F̂l
† −

1

2
�F̂l

†F̂k, �̂	+� , �3�

with F=L for the left and F=R for the right heat bath. The

Lindblad operators F̂k are given by

L̂1 = �̂+
�1�

� 1̂�2�
� ¯ � 1̂�N�, �4a�

L̂2 = �̂−
�1�

� 1̂�2�
� ¯ � 1̂�N�, �4b�

R̂1 = 1̂�1�
� ¯ � 1̂�N−1�

� �̂+
�N�, �4c�

R̂2 = 1̂�1�
� ¯ � 1̂�N−1�

� �̂−
�N�, �4d�

with the creation and annihilation operators �̂
. Here, the
operators given in Eqs. �4a� and �4b� belong to the left bath
and those in Eqs. �4c� and �4d� to the right one. The coeffi-
cient matrices depend on the respective bath temperature �F
and are defined as

	F = 
 �F��� ��F����F�− ��
��F����F�− �� �F�− ��

� �5�

according to the rates

�F��� =
��

e�F� − 1
�6�

with the bath coupling strength �. This concrete form of the
	F matrices follows from a phenomenological ansatz for the
spectral density of the environment, here chosen to be of
Ohmic24,32 kind.

MICHEL et al. PHYSICAL REVIEW B 77, 104303 �2008�

104303-2



A remarkable property of Eq. �3� is that it can be brought
into Lindblad form by diagonalizing the coefficient matrices
	F. The complete dissipative part of Eq. �2� then reads

D��̂� = �
k=1

4


k
Êk�̂Êk
† −

1

2
�Êk

†Êk, �̂	+� , �7�

with Êk being linear combinations of the operators F̂k defined
in Eqs. �4a�–�4d� and 
k being non-negative numbers.

That it is, indeed, possible to derive a Lindbladian QME
is very important here, since a standard stochastic unraveling
of this special type of equation is feasible. Although ex-
tended stochastic schemes exist for the solution of general
QMEs such as, e.g., the Redfield equation,33–35 these meth-
ods have turned out to be less efficient, in general, than the
standard approach.

C. Observables and Fourier’s law

The most interesting state of a nonequilibrium scenario is
the local equilibrium state, i.e., the stationary state of the
QME �2�. This state can be characterized by two central
observables—the energy gradient and the energy current. Let
us use

h��� = Tr�ĥ����̂�t�� �8�

as a local energy density at site �, with �̂�t� being the state of
the system at time t. Since we are investigating internally
weakly coupled subunits in the limit ��J, the local energy
density is approximated by the local Hamiltonian here.
Therefore, we neglect completely the contributions to the
local energy by the interaction. However, due to the small-
ness of J, these parts would be very small contributions to
the above given energy density, and thus, would not dramati-
cally change the results.

In order to obtain a current operator between two adjacent
sites in the system, we consider the time evolution of the
local energy operator given by the Heisenberg equation of
motion for operators at site �

d

dt
ĥ��� = i�Ĥ, ĥ���	 +

�

�t
ĥ���. �9�

Since ĥ��� is not explicitly time dependent, the last term van-
ishes. Inserting Eq. �1� into Eq. �9� yields

d

dt
ĥ��� = i��ĥ��−1,��, ĥ���	 + �ĥ��,�+1�, ĥ���	� . �10�

Assuming that the local energy is a conserved quantity which
is justified when ��J, a discretized version of the continu-
ity equation yields

d

dt
ĥ��� = div Ĵ = Ĵ��,�+1� − Ĵ��−1,��. �11�

By comparing Eqs. �10� and �11�, we find for the current
operator

Ĵ��,�+1� = i�ĥ��,�+1�, ĥ���	 . �12�

Finally, the total energy current flowing from site � to site
�+1 is defined as

J��,�+1� = Tr�Ĵ��,�+1��̂�t�� . �13�

The celebrated Fourier law �here a discrete version� states
that in a proper diffusive situation, the current inside the
system is proportional to the gradient, i.e.,

J��,�+1� = − ��h��+1� − h���	 , �14�

here written in terms of energy current and energy gradient.
If both current and gradient are equal at all sites �, and
furthermore, the gradient is finite, a bulk conductivity8,22 fol-
lows from

� =
J��,�+1�

h��� − h��+1� . �15�

This is called normal or diffusive transport. On the other
hand, if the gradient vanishes and � diverges, the transport is
called ballistic. However, that does not mean that the current
diverges as well. Due to the resistivity at the contact to the
heat bath �in our approach ��, the current will always remain
finite.

Even if we directly get a result in terms of normal or
ballistic behavior for all finite systems here, a nonzero gra-
dient in the finite system is not sufficient to deduce normal
transport in the infinite one, too. The influence of the contact
could dominate the investigation or long ballistic waves
could be suppressed in the finite system. Thus, in order to
obtain statements on the properties of the infinite system
�bulk properties�, it is important to investigate scaling prop-
erties as well. For normal transport behavior, both gradient
and current must tend to zero for infinitely large systems.
Then and only then the system shows diffusive behavior. A
finite current within an infinite system will always indicate
ballistic transport behavior.

Note that the current operator discussed in Eq. �12� is
essentially the standard spin current operator, multiplied by
the �large� Zeeman splitting �. Due to the Zeeman splitting,
there is an energy flow associated with any nonvanishing
spin current. Only this energy flow is described by Eq. �12�;
i.e., it does not contain any energy current that would be
present even if � was zero. Eventually, the stationary state of
the QME �2� will feature such a nonvanishing spin current.
Even though the z component of the magnetization is con-
served on the chain, the reservoirs may create and annihilate
magnetization in the z direction. Hence, we do not compen-
sate for this current by applying an adequate magnetic gra-
dient in the sense of Onsager36,37 �magnetic Seebeck
effect38�. Doing so, for large �, the energy flow described by
Eq. �12� is the dominating part of the full energy current.

D. Monte Carlo wave-function simulation

In order to investigate the transport according to the QME
requires the stationary solution �̂ of Eq. �2�. From �̂, all
gradients and currents can be computed with Eqs. �8� and
�13�. Unfortunately, Eq. �2� is an n2 dimensional system of
linear differential equations if n is the dimension of the Hil-
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bert space. To find the stationary state of this equation, one
has to diagonalize an n2�n2 matrix, which is restricted by
the available memory.

A very powerful technique to find the stationary state
without diagonalizing the Liouvillian is based on the sto-
chastic unraveling24 of the QME. The basic idea is to depart
from a statistical treatment by means of density operators
and turn to a description in terms of stochastic wave func-
tions. In fact, any QME of Lindblad form can equivalently
be formulated in terms of a stochastic Schrödinger equation
�SSE� for the wave function 
��t��

d
��t�� = − iĜ�
��t���
��t��dt + �
k

 Êk
��t��

�Êk
��t���
− 
��t���dnk,

�16�

which describes a piecewise deterministic process in Hilbert
space. The first term on the right hand side of Eq. �16� de-
scribes the deterministic evolution generated by the nonlin-
ear operator

Ĝ�
��t��� = Ĥeff +
i

2�
k


k�Êk
��t���2, �17�

where we have introduced the non-Hermitian, effective
Hamiltonian

Ĥeff = Ĥ −
i

2�
k=1

4


kÊk
†Êk. �18�

The second term in Eq. �16� contains the Poisson increments
dnk� �0,1� which obey the following statistical properties:

�dnk� = �Êk
��t���2dt , �19�

dnkdnl = �kldnk. �20�

The stochastic process, defined by the SSE �16�, can be
conveniently simulated by the following prescription. Start-
ing from a normalized state, the first step of the unraveling
procedure is to integrate the time-dependent Schrödinger
equation according to the effective Hamiltonian defined in
Eq. �18�. Since it is not Hermitian, the normalization of the
state 
��t�� decreases until ���t� 
��t��=�, with � being a
random number drawn from a uniform distribution on the
interval �0,1� at the beginning of the step. Subsequently, a
jump k takes place according to the probability

pk =

k�Êk
��t���2

�
k


k�Êk
��t���2
. �21�

Having identified the jump k, the state 
��t�� is replaced by
the normalized state


��t�� →
Êk
��t��

�Êk
��t���
. �22�

Afterwards, the algorithm starts from the beginning again
with a deterministic evolution step. This procedure leads to

one realization r of the stochastic process. Averaging over
R→� realizations, the time evolution of Eq. �2� is
reproduced.24

The expectation value of an observable Â at time t can be
estimated through

Tr�Â�̂�t�� �
1

R
�
r=1

R

��r�t�
Â
�r�t�� �23�

in a finite ensemble of R realizations to arbitrary precision.
This is of huge practical importance as one deals with wave
functions with O�n� elements instead of density operators
with O�n2� elements. Furthermore, if one is interested in the
stationary state, ensemble averages can be replaced by time
averages39,40 and one single realization suffices to determine
the stationary expectation value

Tr�Â�̂� � Ar =
1

T + 1�
k=0

T

��r�tk�
Â
�r�tk�� �24�

with tk= t0+k�t. It turns out that introducing this uniform
time discretization, and allowing for jumps to occur at mul-
tiples of �t only, has several technical advantages. However,
one has to bear in mind that this introduces an error of order
O��t�.41 A further problem is that for �t→0, the total num-
ber of time steps T have to be increased in order to retain a
sufficient number of jumps in the average �24�. This overall
increase of accuracy will be purchased at the cost of tedious
computations. Nevertheless, in practice, the time-averaging
procedure proves highly efficient, and results of sufficient
accuracy could always be produced. It is further advisable to
discard the initial time evolution in the average in order to
obtain reliable results, i.e., by choosing t0�0.

In order to gain the standard deviation as a measure for
the statistical error as well, one should compute the station-
ary expectation value of R realizations. Thus, its mean is
obtained by

Ā =
1

R
�
r=1

R

Ar, �25�

and the standard deviation of the average yields

�2 =
1

R�R − 1��r=1

R

�Ar − Ā�2. �26�

These errors are influenced by the chosen sampling interval
�t, the neglected steps at the beginning t0, and the total
amount of time steps T being averaged over. For all numeri-
cal results below, we have chosen the parameters �t=1, t0
=104, and T between 105 and 106. For those settings, the
errors are surprisingly small already.

III. CHAIN OF TWO-LEVEL ATOMS

First, we consider a chain of two-level atoms or spin-1 /2
particles as depicted in Fig. 1. In this case, the local part of
the Hamiltonian is just given by the mentioned Zeeman split-
ting of the individual spin
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ĥ��� =
��

2
�̂z

���, �27�

with a splitting �� which may differ from site to site. Apart
from that, � has to be large compared to the coupling con-
stant J to remain in the weak coupling limit. The subunits are
coupled by a generalized Heisenberg interaction

ĥ��,�+1� = �̂x
���

� �̂x
��+1� + �̂y

���
� �̂y

��+1� + ��̂z
���

� �̂z
��+1�.

�28�

For ��1, the chain is called anisotropic chain, and for �
=0, the present model is equivalent to the XY model �Förster
coupling�. In this case, by plugging Eq. �27� and the interac-
tion given by Eq. �28� into Eq. �12�, the current operator
yields

Ĵ��,�+1� = iJ����̂+
����̂−

��+1� − �̂−
����̂+

��+1�	 . �29�

The above given system is coupled to heat baths of dif-
ferent temperatures. The left bath is set to the inverse tem-
perature �L=0.5, and the hotter one at the right hand side is
at �R=0.25. Both baths couple with the same coupling
strength �=0.01 to the system.

Having computed the stationary state of Eq. �2� by using
the method presented in Sec. II D, one can compute both the
stationary energy profile within the system and the current
flowing through the system. In Fig. 2, the internal gradient is
shown for an isotropic chain �=1 of N=12–16 spins ac-
cording to the same constant local field �=1 and coupling
strength J=0.01. To show that the gradient is equivalent for
the different system sizes, we have normalized the chain
length in Fig. 2 to 1. The fit �line in Fig. 2� is carried out for
system size N=16 excluding sites 1 and 16, because of
strong influences of the contacts. Even if the fit is done for
system size 16 exclusively, all chains show the same gradi-
ent. However, the energy difference between adjacent sites
decreases for growing system sizes. The change in the inter-
nal gradient is shown in the upper diagram of Fig. 3. Here,
the gradient is plotted over the reciprocal chain length. The
error bars refer to an average over the energy differences in
all adjacent pairs of sites, where the first and last pairs have
been neglected again as already done in Fig. 2. As can be
seen from Fig. 3, the gradient decreases for larger systems
until it approaches zero for an infinite chain, which is in
accordance with the expected behavior in the thermodynami-
cal limit.

The lower part of Fig. 3 shows the scaling behavior of the
current through the system. Here, error bars refer to the fail-
ure produced by the stochastic algorithm given by the square
root of Eq. �26�. The current decreases similar to the gradi-
ent; however, the extrapolation for the infinitely long chain
does not approach zero. A finite current for an infinite system
is a typical characteristic for ballistic transport behavior. Ac-
cording to the data shown in Fig. 3, one could eventually
conclude finding ballistic transport in the Heisenberg chain.

Figure 4 shows the local energy profile within the XY
model ��=0�. In comparison to Fig. 2, the profile within the
systems is flat. According to Fourier’s law �14�, this could be
interpreted as ballistic behavior in the investigated finite
models of different lengths �cf. discussion in Sec. II C�. The
local current between sites � and �+1 remains finite al-
though the gradient within the system vanishes. This local
current is constant for all investigated system sizes and we
find for the chosen parameters �5.33
0.05��10−4. The re-
sults concerning the Heisenberg chain and the XY model are
in accordance with some earlier results �for smaller systems�
based on the full diagonalization of the Liouvillian.18,42

J JJJ λλ

µ µ + 1

βL βR

system
hot bathcold bath

FIG. 1. Chain of two-level atoms or spin-1 /2 particles coupled
to heat baths of different temperatures.
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FIG. 2. Local energies in a Heisenberg chain with length N
=12–16. The system number is normalized by the chain length. The
fit is carried out for chain length N=16 excluding sites 1 and 16.
System parameters: J=0.01, �=1, �=1, �=0.01, �L=0.5, and �R

=0.25.

0

0
0 0.05 0.1 0.15 0.2

0.0001

0.0002

0.0003

0.0004

0.002

0.004

0.006

data

data

fit

fit

cu
rr

en
t

g
ra

d
ie

n
t

reciprocal chain length

FIG. 3. Scaling properties of the Heisenberg chain N=5–16.
Lines are fits carried out for chain length N=6–16. System param-
eters: J=0.01, �=1, �=1, �=0.01, �L=0.5, and �R=0.25.
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In Fig. 5, we investigate the dependence of the extrapo-
lated value of the current and the energy gradient of an infi-
nitely long chain on the coupling strength � at the contact. In
order to get comparable data and errors, all other parameters
are kept constant. A decrease of the external coupling
strength is combined with a decrease in the global decay
time of the system and a drastic change of the jump prob-
abilities �21� as well. To gain a proper expectation value
from Eq. �24� with a rather small error, it is crucial that the
sampling time step �t of the continuous stochastic trajectory
is chosen in a way that a suitable amount of both coherent
dynamics and stochastic jumps enter the average. That
means, if �t is too large, so that after each coherent step
follows a jump already, the result of Eq. �24� will deteriorate.
Thus, changing the external coupling strength would also
require an adaption of the sampling parameter �t. Further-
more, in the case of a larger decay time of the system, also
the parameter t0 �initial neglect of data points� has to be
increased. Thus, having fixed these parameters to get com-
parable data, we are restricted to a small change of the ex-
ternal coupling strength only. For the finite system, an in-
crease in the external coupling strength � denotes that a
larger current is injected into the system, as follows from

Fig. 5. The resistance of the contact is decreased. Finally, this
also results into a larger gradient within the system. Never-
theless, Fig. 5 shows that even if the results for finite systems
change drastically �especially for very small system sizes�,
the extrapolation for the infinite chain remains the same
within the accuracy of the fit.

Figure 6 shows the scaling behavior of the current for
different values of the anisotropy � and Fig. 7 shows the
scaling of the gradients, respectively. From the linear fits in
Fig. 6, one could extrapolate the current within an infinitely
long chain. This current is shown in Fig. 8 with dependence
on � ��=1 refers to the Heisenberg chain and �=0 to the
XY model�. Near the anisotropy �=1.6, the current within
the infinite system seems to vanish �cf. Fig. 6�, i.e., the
analysis at hand indicates normal transport behavior.
Whether this is obtained for increasing � as well cannot be
decided clearly from this analysis, but it seems to be prob-
able that it remains diffusive for higher values of �.

Having found diffusive behavior according to the Kubo
formula, it seems, nevertheless, unclear how to extract the dc
conductivity from the behavior of the finite system. Contrary
to the Kubo investigation, a dc conductivity directly follows
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FIG. 4. Local energies in an XY chain with length N=9–12. The
system number is normalized by the chain length. The fit is carried
out for chain length N=12 excluding sites 1 and 12. System param-
eters: J=0.01, �=0, �=1, �=0.01, �L=0.5, and �R=0.25.
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from Eq. �15�, in the present analysis, if we assume for the
moment that the linear scaling of current and gradient found
in Figs. 6 and 7 is also valid for larger systems. According to
the small errors found in the above investigation, this as-
sumption seems to be plausible. Thus, we are able to com-
pute the conductivity of the infinite system for �=1.6 using
Eq. �15� by dividing the slope of the current by the slope of
the energy gradient, directly finding ��= �2.34
0.08�
�10−2. Here, the error follows from the uncertainty of the
linear regression, which is weighted already by the errors of
the data points.

Unfortunately, the models which can be investigated ac-
cording to the suggested method are also restricted in size.
The main restriction here is not the size of memory, but the
time one accepts to wait for the data. For the present tech-
nique, the computing time scales exponentially with the sys-
tem size. Thus, investigations how disorder �random offset in
the local field, random couplings� would change the above
results are not available yet.

Let us discuss another Heisenberg coupled chain of two-
level systems in the following. However, we will analyze
an alternating local field in the following, given by ��=1
+ �−1��� with �=2,3 , . . . ,N−1, i.e., no change in the field at
the edge of the system. This keeps the contact unchanged
even if � is varied. The gradient of such a system is depicted
in Fig. 9 and shows a modulation in the local energies ac-
cording to the change in the field. Nevertheless, we have
fitted the gradient by a least square fit, shown for N=14 in
Fig. 9, and used such fits to obtain data for the gradient in
systems with different sizes �upper part of Fig. 10�. Even if
the local profile is not as flat as before, the current between
adjacent sites is always the same. The scaling behavior of
current and gradient is depicted in Fig. 10 for �=0.02. Again,
the current within the infinite chain seems to vanish, which
could be a hint for normal transport. A scan over the param-
eter � is depicted in Fig. 11. As can be seen, the current for
the infinitely long chain roughly approaches zero at �=0.02.
For larger �, it remains approximately zero within the stated
accuracy. Thus, this investigation points toward normal
transport behavior above �=0.02.

Using again Eq. �15� and dividing the slope of the current
by the slope of the gradient depicted, e.g., in Fig. 10, we find

the conductivities of the infinite system above �=0.02 given
in Table I. Of course, this is again only correct if the scaling
behavior remains the same as already found in this finite size
analysis for larger systems as well.

IV. LADDER OF TWO-LEVEL ATOMS

The second class of models is a spin ladder introduced in
Fig. 12. In order to consider the transport in the model, the
system is partitioned into subunits � containing two Heisen-
berg coupled spins with coupling strength J�. Thus, the local
part of the Hamiltonian for subunit � is described by

ĥ��� =
�

2
��̂z � 1̂ + 1̂ � �̂z� + J��̂ · �̂ , �30�

with the spin vector �̂= ��̂x , �̂y , �̂z�. Again, we consider two-
level systems with an energy splitting �, here. The interac-
tion between two adjacent sites � is given by
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ĥ��,�+1� = �
i=x,y,z

��̂i � 1̂ � �̂i � 1̂ + 1̂ � �̂i � 1̂ � �̂i� .

�31�

Because of the weak internal couplings, one may use a
special type of bath contact called private bath here. This
means that each spin at the edges of the system is coupled to
its own “private” heat bath, with temperature �L at the left
hand side and �R at the right hand side. This is different from
a more general approach where the two systems at the edge
are viewed as one four-level system each, to which the re-
spective heat bath couples. The concept of private baths is
only valid in the weak coupling limit again, i.e., J ,J���.

In Fig. 13, we show the internal gradient of a ladder with
N=5–7 rungs, according to the same coupling strength in
horizontal and vertical directions J=J�=0.01. Again, we
have normalized the length of the chain to fit all different
chain lengths into the figure. As can be seen from the figure,
the system features a nice linear energy gradient, again. The
scaling behavior of current and gradient for J=J�=0.01 is
depicted in Fig. 14. There is no possibility to compute a
reasonable error for the system sizes N=3 and N=4. This is
due to the fact that for N=3, there is no pair without a con-
tact to a heat bath, and for N=4, there is just one energy
difference in the center of the system away from the bath
coupling. Nevertheless, we have plotted those system sizes
within Fig. 14. The errors for larger system sizes are surpris-
ingly small, because of the large total system size. Due to the
too small available system size and the strong influence of
the baths at the edges, the gradient in the small systems is

essentially different from the gradient in larger ones. How-
ever, the current in small systems is already close to the
linear fit for larger system sizes.

Figure 15 shows the current for the infinite system ex-
tracted of the scaling analysis with dependence on the verti-
cal coupling strength J�. According to this investigation, we
do not find normal transport in any of the considered ladder
models. The coupling strength J�=J already seems to be the
minimum. For J�=0, we get two completely independent
Heisenberg chains with a maximum length of seven spins.
Larger values than J�=0.02 could be evaluated; however,
results would be questionable because the weak coupling
limit is violated. Since the weak coupling limit is crucial for
the derivation of the underlying QME, the results would be
mathematically correct, but physically not interpretable.

V. CONCLUSION

In the present paper, we have studied several models of
two-level atoms or spin-1 /2 particles coupled to heat baths
of different temperatures. The investigation has been based
on a recently derived QME which simulates the nonequilib-
rium situation properly. This QME is of Lindblad form and
can, thus, be efficiently unraveled using a standard Monte
Carlo wave-function technique. The significant advantage of
such an approach is its applicability to larger systems in

TABLE I. Conductivity for the alternating local field chain in
the diffusive regime.
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comparison to the restricted system sizes which can be in-
vestigated by a direct diagonalization of the Liouvillian. This
follows from the fact that the stochastic unraveling deals
with wave functions rather than density operators. All inter-
esting quantities are, here, given as mean values over sto-
chastic trajectories and can be evaluated to arbitrary preci-
sion by adjusting the amount of time steps averaged over.
Here, we are interested mainly in the energy profile within
the system and the energy current through it. The analysis of
both current and gradient with dependence on the system
size gives information on the underlying transport behavior,
which could be, in principle, of ballistic or normal diffusive
nature.

For finite systems, the method at hand always leads to an
easily interpretable result, in terms of currents, energy pro-
files, and the resulting conductivities. This is mainly a result
of the concrete design of the method by a direct contact of
the system with heat baths. The extrapolation to infinite sys-
tem sizes, to extract bulk properties from the analysis of
finite systems, is done by a careful scaling analysis of both
gradients and currents. Finally, this provides an indication of
the type of transport in an infinite probe of the model system
as well.

We have analyzed a multitude of different concrete spin
models here. Those systems consist of weakly coupled two-
level atoms or spins. In the first part, we have investigated
chains according to different coupling models and local
fields. The consideration was centered around the general-
ized Heisenberg chain, i.e., a Heisenberg chain with different
ZZ-coupling strengths according to the parameter � within
the model. Among those, one prominent model is the XY
model with vanishing � featuring ballistic transport in both
the finite and infinite models. Despite the relatively small
system sizes investigated here, there are some hints for nor-
mal transport in the models as well: The scaling analysis of
the anisotropic model with �=1.6 features a vanishing cur-
rent for infinite chain size. Such a finding is typically con-
nected to diffusive behavior. Second, the Heisenberg chain
with alternating local field shows a zero current above some
threshold dependent on the difference of the local fields.

Besides those investigations concerning the transport be-
havior, we have also considered the dependence of the re-
sults on the bath contact. Here, we find that the extrapolated
results do not crucially depend on the respective coupling
strength.

In the second part, we have analyzed a Heisenberg ladder
with different coupling strengths in horizontal and vertical
directions. According to this investigation of very short lad-
ders, no evidence for normal diffusive behavior with depen-
dence on the coupling strength in the vertical direction is
found. The extrapolated current remains finite over the com-
plete accessible parameter space.

In a nutshell, the comparison between our results and re-
sults based on the Kubo theory can eventually be summa-
rized in Table II.

The heat bath coupling approach to transport behavior
presented in this paper features some significant advantages:
Besides the direct determination of current and gradient in
the finite system, and thus, of the conductivity in any con-
crete finite situation, the method also allows us to extract the

TABLE II. Comparison between results for the energy transport
�as defined by Eq. �12�	 within different model systems featuring a
finite local splitting � �finite magnetic field�, as obtained from the
Kubo formula and the bath coupling approach. Results for the Kubo
formula are taken from Refs. 13 and 43.
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conductivity of the infinite model by means of an extrapola-
tion. This extrapolation relies on the linear scaling behavior
of current and gradient toward zero, which is extracted from
the analysis of finite system sizes. Thus, the direct coupling
of reservoirs to model systems substantially improves the
understanding of the transport behavior of such models on
both small and infinite scales.
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